

WL2817DA

Ultra low dropout, 500mA/1A, CMOS LDO

Descriptions

The WL2817DA series are ultra low dropout, Low quiescent current, high PSRR CMOS LDO.

Using CMOS construction, the quiescent current consumed by the WL2817DA is typically 160uA over the entire input voltage range, making it attractive for consumer, networking applications that demand high output current. The WL2817DA series are available in wide output voltage range version from 1.0V to 3.3V.

The WL2817DA series offer thermal shutdown (OTP) and current limit functions, to assure the stability of chip and power system at wrong condition, and it uses trimming technique to guarantee output voltage accuracy within ±2%.

The WL2817DA series can choose the output current limit between 1.0A or 500mA by alternating the LCON pin between "H" or "L". The WL2817DA regulators are available in DFN1612-8L packages. Standard products are Pb-free and Halogen-free.

Features

Input voltage : 2.5V~5.5V

Output voltage range :1.0V 1.1V 1.2V 1.5V 1.8V 2.7V 2.8V 2.9V 3V 3.3V

Output current : 500mA/1A

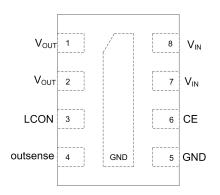
PSRR : 60dB(@ V_{OUT}=3V) Dropout voltage : 70mV @ I_{OUT}=0.5A

Output noise : $50\mu V_{RMS}$ Quiescent current: 160µA Typ.

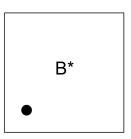
Applications


- LCD TV
- STB
- Computer, Graphic card
- Network communication equipments
- Others portable electronics devices

Tel: + 1 408 567 3000


Fax: + 1 408 567 3001

www.ovt.com


Http://www.ovt.com

DFN1612-8L

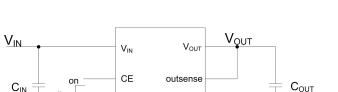
Pin Configuration (Top View)

B = Device code (3.0V)

= Month code (N: 2015.01,

O:2015.02, and so on)

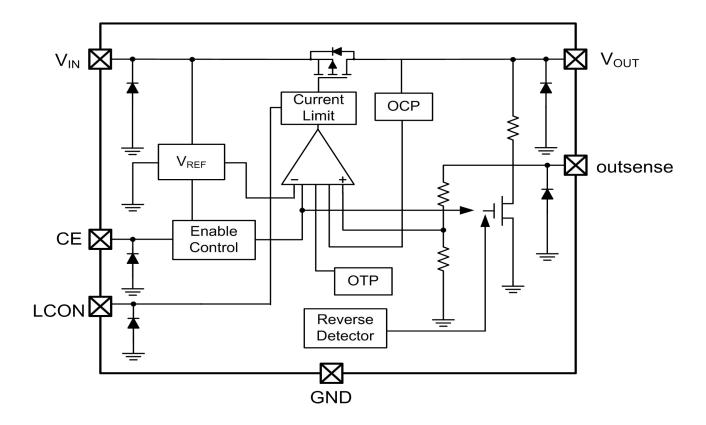
Marking


Order Information

For detail information, Please refer to page 15.

Apr. 2019 - Rev1.8

Typical Application


	Min.	Тур.	Max.
C _{IN}		4.7uF	
Соит		1uF	

LCON

Pin Description

PIN	Symbol	Description
1	V _{OUT}	Output
2	V _{OUT}	Output
3	LCON	Output Current Limit Alternate Pin ("H"=1A, "L"=500mA)
4	outsense	Feedback Pin
5	GND	Ground
6	CE	Enable, Active High
7	V _{IN}	Input
8	V _{IN}	Input

Block Diagram

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input voltage range	V _{IN}	-0.3∼6.5	V
EN voltage range	V _{EN}	-0.3∼V _{IN}	V
LCON voltage range	V _{LCON}	-0.3∼V _{IN}	V
Output voltage range	Vouт	-0.3∼V _{IN}	V
Power dissipation *1	P _D	625	mW
Thermal resistance	$R_{\theta JA}$	165	°C/W
Junction temperature	TJ	150	°C
Lead temperature(10s)	TL	260	°C
Storage temperature	Tstg	-55 ~ 150	°C
CCD Detines	HBM	2000	V
ESD Ratings	MM	200	V

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Recommend Operating Ratings

Parameter	Symbol	Value	Unit
Operating Supply voltage	V_{IN}	2.5~5.5	V
Operating Temperature Range	Topr	-40∼85	°C

Apr. 2019 - Rev1.8

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

^{*1:} Power dissipation is calculate by $P_D = (V_{IN}-V_{OUT}) \times I_{OUT}$

Electronics Characteristics (Ta=25°C, V_{IN}=V_{OUT}+1V, C_{IN}=4.7uF, C_{OUT}=1uF, I_{OUT}=1mA, LCON=EN=V_{IN}, unless otherwise noted)

Parameter	Symb ol	Condition		Min.	Тур.	Max.	Unit
		T=25℃		Voset*0.98	Voset	Voset*1.02	V
Output Voltage	V _{OUT}	-40℃≤T≤85℃		Voset*0.97	Voset	Voset*1.03	
			LCON= "H"	1			Α
Current Limit	l _{LIM}	V _{IN} =Vset+0.5V	V _{IN} =Vset+0.5V LCON= "L"				Α
Dropout Voltage	V _{DROP}	V _{OUT} =V _{OUT} *0.9	I _{OUT} =0.5A		70		mV
Load Regulation	$ riangle V_Load$	V _{IN} =Vset+0.5V	LCON= "H" : 1mA≤l _{OUT} ≤1A		3.5		mV
Load Regulation	∠ V Load		LCON= "L": 1mA≤l _{OUT} ≤0.5A		1.5		mV
UVLO	V_{uvlo}				2		V
Line Regulation	$\triangle V_{LINE}$	Vset+0.5V≤V _{IN} ≤5	5.5V (V _{IN} ≥UVLO)		5	10	mV
Quiescent Current	lQ	I _{OUT} =0			160	220	uA
Shut-down Current	I _{SHDN}	V _{EN} = 0V			1	3	uA
V _{OUT} Temperature Coefficient	ΔV _{OUT} / ΔΤ	-40°C≤T≤85°C			100		ppm/ ℃
Short Current Limit	I _{sc}	V _{OUT} =0V	LCON= "H"		160		mA
			LCON= "L"		80		mA
Inrush Current Limit	I _{rush} *1		LCON= "H"		500		mA
		CC mode	LCON= "L"		250		mA
Reverse Current	I _{rev} *2	V _{OUT} =Voset+1V; 0≤V _{IN} ≤Vrev_del	EN=0;		4.5	10	uA
Detector offset voltage in reverse current protection mode	V _{rev_det} *3	V _{OUT} =Voset+1V;	EN=0		0.5		V
Release offset voltage in reverse current protection mode	V _{rev_rel} *4	V _{OUT} =Voset+1V;	EN=0		0.35		V
Max reverse Current	I _{revmax} *5	V _{OUT} =Voset+1V;	EN=0		70		uA
Discharge resistance	R _{dis}	EN=0			60		Ω
Power Supply Ripple	B055	V _{IN} =(V _{OUT} +1V) _{DC}	+0.2V _{P-P}				.15
Rejection	PSRR	F=1KHz ,I _{OUT} =10mA			60		dB
Output noise voltage		BW=10Hz to 100	OKHz I _{OUT} =0		40		
(V _{OUT} =3V)	e _{NO}	BW=10Hz to 100	OKHz I _{OUT} =10mA		60		μV _{RMS}
Output noise voltage		BW=10Hz to 100	OKHz I _{OUT} =0		20		.,
(V _{OUT} =1.0V)	e _{NO}	BW=10Hz to 100	OKHz I _{OUT} =10mA		35		μV _{RMS}
EN logic high voltage	VENH	V _{IN} =5.5V, I _{OUT} =1	mA	1.2			V

4

Apr. 2019 - Rev1.8

EN logic low voltage	V _{ENL}	V _{IN} =5.5V, I _{OUT} =0mA			0.4	V
EN pull-down current	l _{en}			0.2	1	uA
LCON pull-down current	I _{LCON}			0.2	1	uA
EN logic high voltage	V _{ENH}		1.2			V
EN logic low voltage	VENL				0.4	V
LCON logic high voltage	V _{ENH}		1.2			V
LCON logic low voltage	V _{ENL}				0.4	V
Thermal shutdown threshold	T _{SD}			165		°C
Thermal shutdown hysteresis	△ T _{SD}			30		°C

^{*1:} For CC (Constant Current) mode, please refer to Start-up Characteristics.

Start-up Characteristics

Constant slope circuit is included in the WL2817DA to prevent the overshoot of the output voltage. If inrush current increases due to the large capacitance of C_{OUT}, the operation mode will be shift from Constant Slope (CS) mode to Constant Current (CC) mode. The CC mode maintains a constant inrush current. In the CC mode, ton varies with the size of COUT and the load current.

Reverse Current Protection Circuit

The WL2817DA include a Reverse Current Protection Circuit, which stop the reverse current from V_{OUT} pin to V_{IN} pin or GND pin when V_{OUT} becomes higher than V_{IN} .

Following figure shows the load characteristics of each mode. When giving the V_{OUT} pin a constant voltage and decreasing the V_{IN} voltage, the V_{IN} voltage will become lower than V_{OUT} - V_{rev_det} , the reverse current protection starts to function to stop the load current. By increasing the V_{IN} voltage higher than V_{OUT} - $V_{\text{rev_rel}}$, the protection mode will be released to let the load current to flow. When V_{IN} voltage is between V_{OUT} and V_{rev_det} , the parasitic diode between V_{IN} pin and V_{OUT} pin becomes forward direction. As a result, the current flows from V_{OUT} pin to V_{IN} pin, and the maximum of the current is Irevmax.

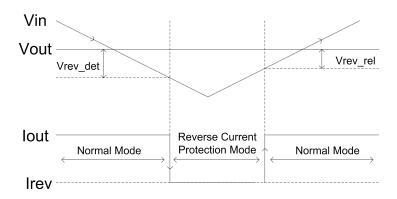
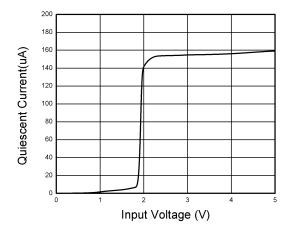
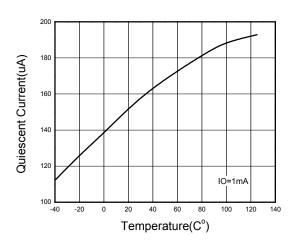


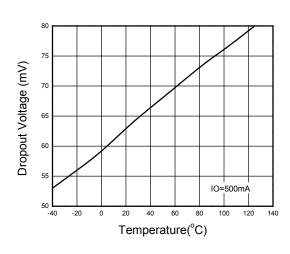
Figure 1. Detection/Release Threshold value of Reverse Current Protection

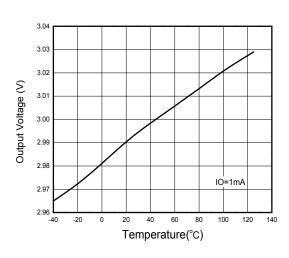

 $m{m{\varnothing}}$ OMNIVISION $^{\circ}$


Apr. 2019 - Rev1.8

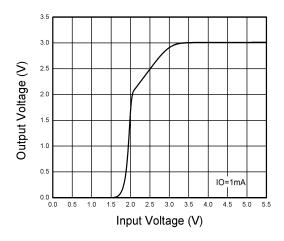
Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

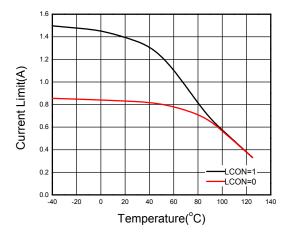
^{*2 *3 *4 *5:} Please refer to reverse current protection mode


Typical characteristics (Ta=25°C, V_{IN}=4V, V_{OUT}=3V, C_{IN}=4.7uF, C_{OUT}=1uF, unless otherwise noted)

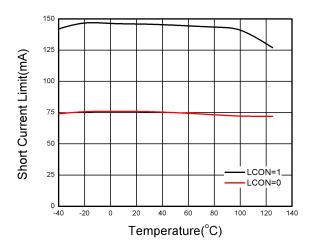


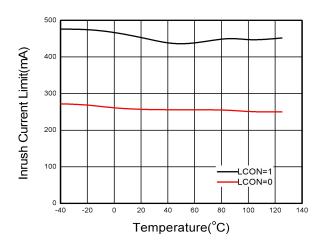
Quiescent current vs. Input voltage


Quiescent current vs. Temperature

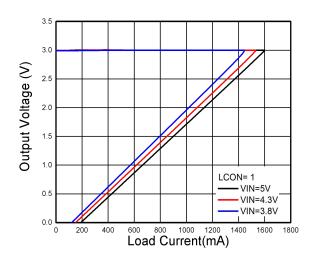


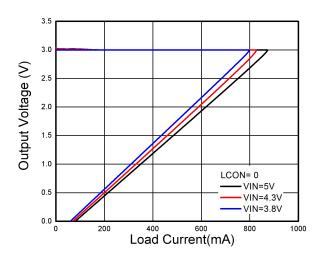
Dropout Voltage vs. Temperature


Output Voltage vs. Temperature



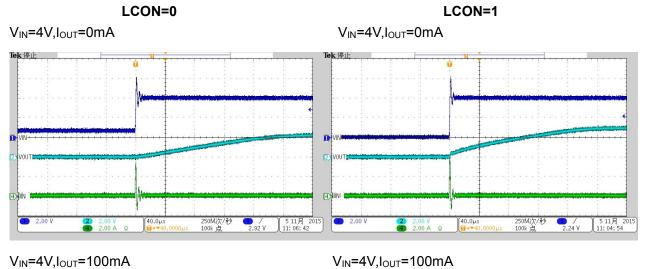
Output voltage vs. Input voltage

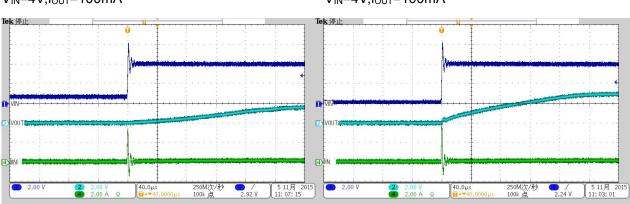

Current Limit vs. Temperature

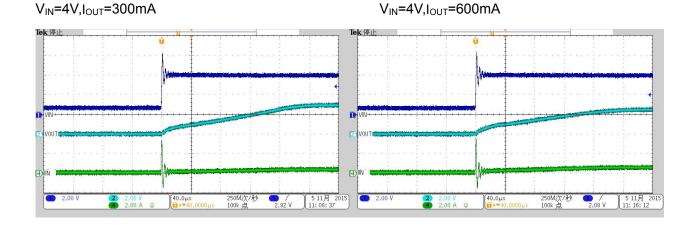


Short Current Limit vs. Temperature

Inrush Current Limit vs. Temperature

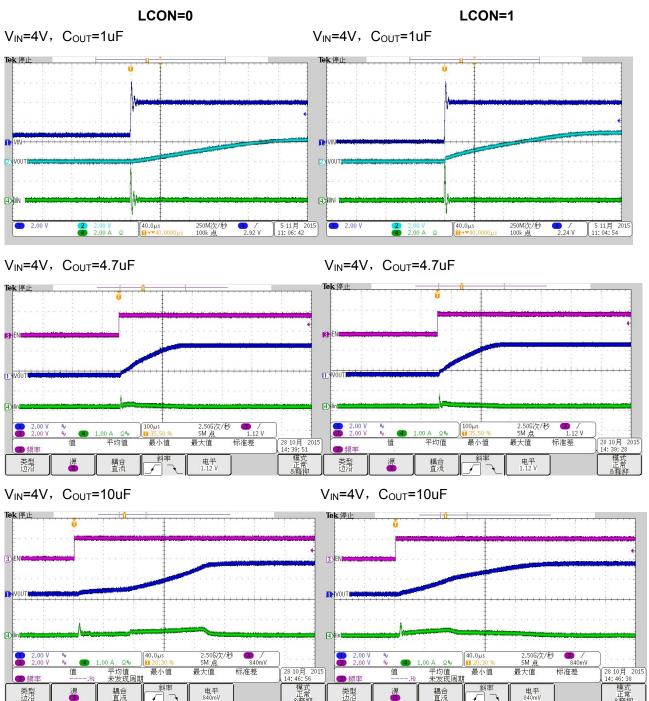

Output Voltage vs. Load Current


Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

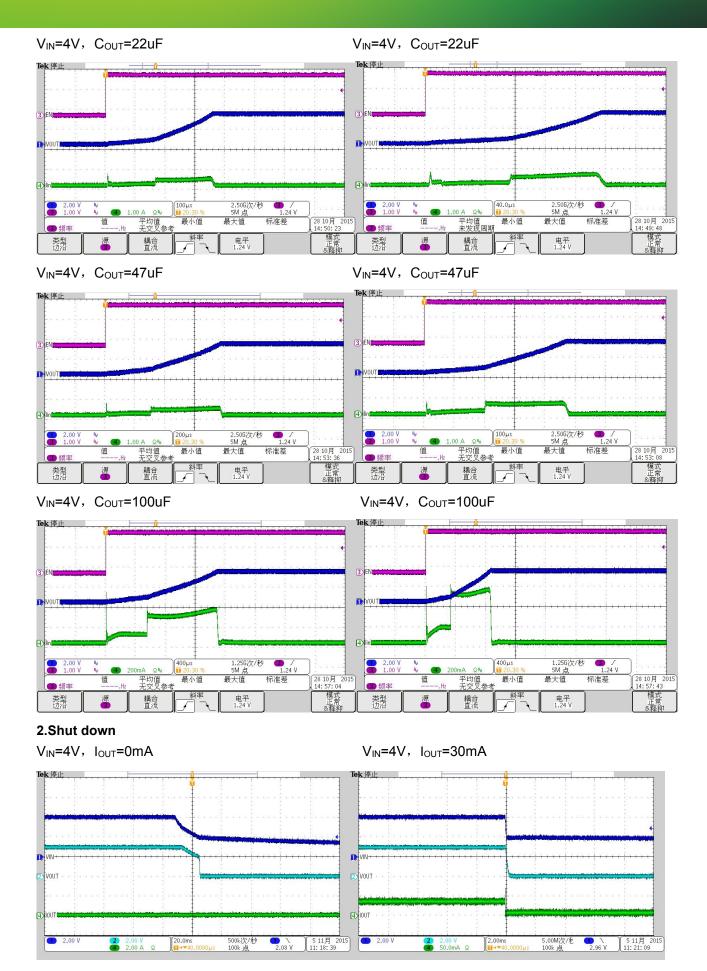

Output Voltage vs. Load Current

1.Start up

A: Different Load

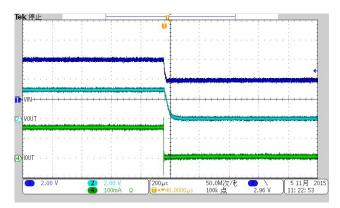


Apr. 2019 - Rev1.8


Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

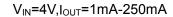
Ø OMNIVISION™

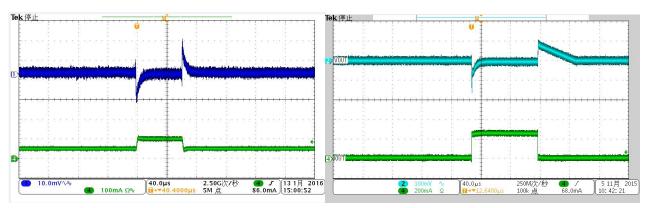
Tel: + 1 408 567 3000 Fax: + 1 408 567 3001



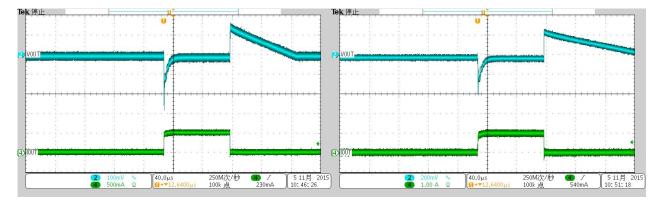
Apr. 2019 - Rev1.8

Tel: + 1 408 567 3000

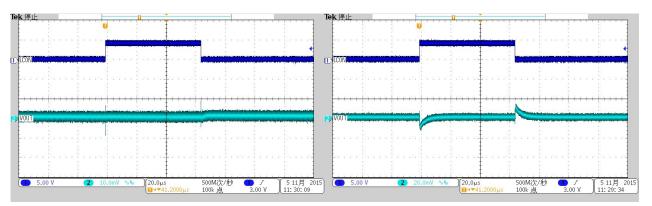

Fax: + 1 408 567 3001 www.ovt.com

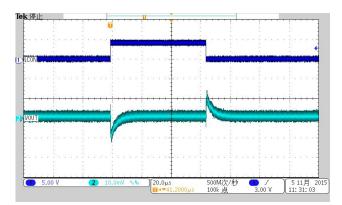


3.Load Step


 V_{IN} =4V, I_{OUT} =50mA-100mA

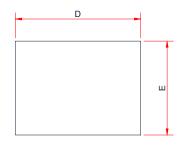
 V_{IN} =4V, I_{OUT} =1mA-500mA



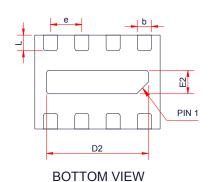

4.LCON Line Step

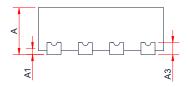
V_{IN}=4V, I_{OUT}=0mA

V_{IN} =4V, I_{OUT} =500mA

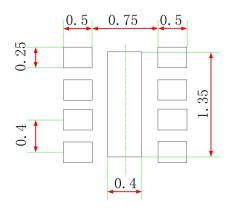

Apr. 2019 - Rev1.8

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001




PACKAGE OUTLINE DIMENSIONS

DFN1612-8L



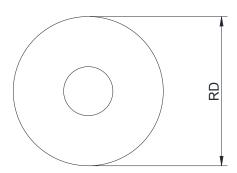
SIDE VIEW

Compleal	Dimensions in Millimeters			
Symbol	Min.	Тур.	Max.	
A	0.50	0.55	0.60	
A1	-	-	0.05	
A3	0.15 Ref.			
D	1.55	1.60	1.65	
Е	1.15	1.20	1.25	
D2	1.25	1.30	1.35	
E2	0.25	0.30	0.35	
b	0.13	0.18	0.23	
е	0.40 BSC			
L	0.15	0.20	0.25	

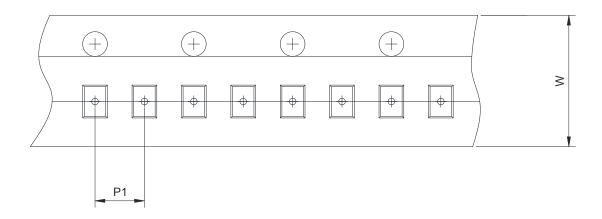
Recommend PCB Layout (Unit: mm)

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

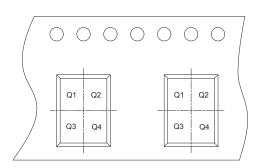
www.ovt.com

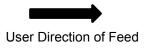

Notes:

This recommended land pattern is for reference purposes only. Please consult your manufacturing group to ensure your PCB design guidelines are met.



TAPE AND REEL INFORMATION


Reel Dimensions


Tape Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

RD	Reel Dimension	☑ 7inch	13inch		
W	Overall width of the carrier tape	☑ 8mm	☐ 12mm	☐ 16mm	
P1	Pitch between successive cavity centers	2mm	✓ 4mm	8mm	
Pin1	Pin1 Quadrant	▼ Q1	□ Q2	□ Q3	□ Q4

ORDER INFORMATION

Ordering No.	V _{OUT} (V)	Package	Marking	Operating Temperature	Shipping
WL2817DA10-8/TR	1.0	DFN1612-8L	C*	-40 ~ +85°C	3000/Tape and Reel
WL2817DA11-8/TR	1.1	DFN1612-8L	J*	-40 ~ +85°C	3000/Tape and Reel
WL2817DA12-8/TR	1.2	DFN1612-8L	K *	-40 ~ +85°C	3000/Tape and Reel
WL2817DA15-8/TR	1.5	DFN1612-8L	L*	-40 ~ +85°C	3000/Tape and Reel
WL2817DA18-8/TR	1.8	DFN1612-8L	D*	-40 ~ +85°C	3000/Tape and Reel
WL2817DA27-8/TR	2.7	DFN1612-8L	M*	-40 ~ +85°C	3000/Tape and Reel
WL2817DA28-8/TR	2.8	DFN1612-8L	E*	-40 ~ +85°C	3000/Tape and Reel
WL2817DA29-8/TR	2.9	DFN1612-8L	N*	-40 ~ +85°C	3000/Tape and Reel
WL2817DA30-8/TR	3.0	DFN1612-8L	B*	-40 ~ +85°C	3000/Tape and Reel
WL2817DA33-8/TR	3.3	DFN1612-8L	l*	-40 ~ +85°C	3000/Tape and Reel