

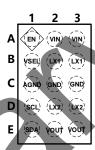
WD5125C

2.5A Buck-Boost Converters with I²C Interface

Descriptions

The WD5125C is a high efficiency, high output current buckboost converter fully programmable through I²C. Depending on the input voltage, it can automatically operate in boost, buck or in a novel 4-cycle buck-boost mode when the input voltage is approximately equal to the output voltage. The transitions between modes happen at defined thresholds and avoid unwanted toggling within the modes to reduce output voltage ripple. Two registers, accessible through I²C, set the output voltage, and a VSEL pin selects which output voltage register is active. Thus the devices can support dynamic voltage scaling. If the output voltage register is changed during operation or the VSEL pin is toggled, the device transits in a defined, programmable ramp-rate.

The WD5125C is available in a 2.2mm×1.3mm CSP-15L package. Standard products is Pb-Free and Halogen-Free.


Features

- Input Voltage Range: 2.2V to 5.5V
- Output voltage range: 1.8 V to 5.2 V
 - ♦ I²C-configurable during operation and shutdown
 - ♦ VSEL pin to toggle between two output voltage presets
- Current mode buck-boost architecture
 - Defined transitions between buck, buck-boost and boost operation
 - ◆ Forward and reverse current operation
 - Start-up into pre-biased outputs
- Safety and robust operation features
 - Integrated soft start
 - ◆ Overtemperature and VINOV protection
 - ◆ True load disconnect during shutdown
 - Forward and backward current limit
- Pre-programmed output voltages (3.3 V, 3.45 V)
- High efficiency over entire load range
 - ♦ Low 13 μA operating quiescent current
 - Automatic power save mode and forced PWM mode (I²C-configurable)

http://www.ovt.com/

CSP-15L

Pin configuration (Top view)

= Device code

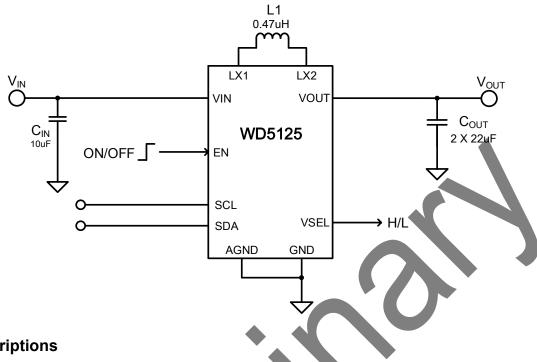
= Special code

= Year code

V = Week code

Marking

Applications


- System pre-regulator
- Point-of-load regulation
- Thermoelectric device supply
- Broadband network radio or SoC supply

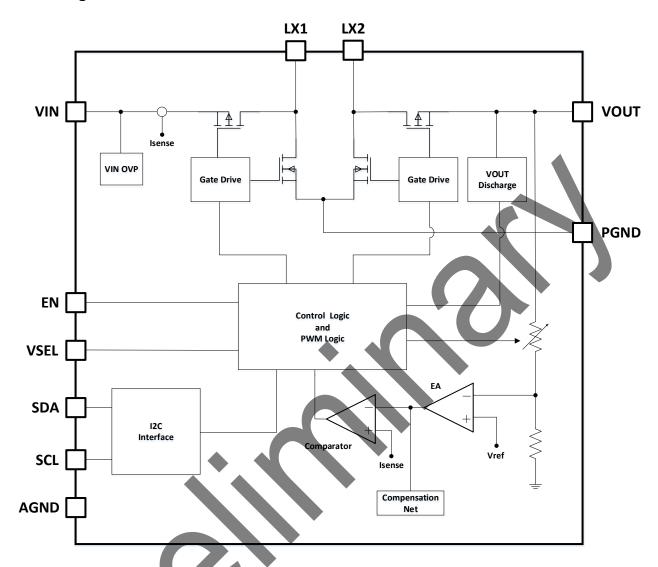
Order information

Device	Package	Shipping
WD5125C -15/TR	CSP-15L	3000/Reel&Tape

Typical Applications

Pin Descriptions

Pin NO.	Symbol	I/O	Descriptions
A 4	-N		Device enable. A high logic level on this pin enables the device; a low logic
A1	EN	I	level on this pin disables the device.
A2	VIN	_	Supply voltage for power stage
A3	VIN	_	Supply voltage for power stage
			This pin selects which VOUT register is active. When a low logic level is
B1	VSEL	I	applied to this pin, the VOUT1 register sets the output voltage. When a high
			logic level is applied to this pin, the VOUT2 register sets the output voltage.
B2	LX1	14	Inductor connection
В3	LX1	_	Inductor connection
C1	AGND	-	Analog ground
C2	GND	7	Power ground
C3	GND		Power ground
D1	SCL	I/O	I2C serial interface clock. Pull this pin up to the I2C bus voltage with a
וט	SCL	1/0	resistor or a current source.
D2	LX2		Inductor connection
D3	LX2	_	Inductor connection
E1	SDA	I/O	I2C serial interface data. Pull this pin up to the I2C bus voltage with a
□ I	SDA	1/0	resistor or a current source.
E2	VOUT	_	Converter output
E3	VOUT		Converter output


OMNIVISION

Mar. 2021 - Rev. 0.7

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Farameter	Symbol	value	Offic
Input voltage	VIN, LX1, LX2, VOUT, SCL, SDA, EN, VSEL	- 0.3∼+6	V
Input voltage for less than 10 ns	LX1, LX2	-3∼9	V
Thermal Characteristics (1)	ReJA	80.5	°C/W
Thermal Characteristics (1)	Rejc	0.6	°C/W
Maximum Junction Temperature	TJ	150	°C
Operating Ambient Temperature	Topr	-40 ~ 85	°C
Storage Temperature	Tstg	-65 ~ 150	°C
CCD Classification	НВМ	±2000	V
ESD Classification	CDM	±500	V

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Recommended Operation Conditions (2)

Symbol	Characteris	Min.	Тур.	Max.	Unit	
V _{IN}	Supply Voltage		2.2		5.5	V
Vout	Output Voltage	Low range	1.8		4.975	V
V 001	Output Voltage	High range	2.025		5.2	V
V _{IH}	High-level input voltage	SCL, SDA, VSEL	1.3		Vin	V
VIL	Low-level input voltage	SCL, SDA, VSEL	0		0.3	V
VEN	Input voltage	0		Vin	V	
		$V_0 = 3.3 \text{ V}, V_1 \ge 2.5 \text{ V}$			2.3	
lo	Output current	$V_0 = 3.5 \text{ V}, V_1 \ge 2.5 \text{ V}$		1	2	Α
10		$V_0 = 3.5 \text{ V}, V_1 \ge 2.8 \text{ V}$			2.5	A
		$V_0 = 3.3 \text{ V}, V_1 \ge 3 \text{ V}$			3	
Cin	Input capacitance, effective valu	е	5			μF
Co	Output capacitance, effective va	lue	13	16		μF
L	Inductance, effective value	0.39	0.47	0.56	μH	
T _A	Operating free-air temperature	-40	-	85	℃	
TJ	Operating junction temperature		-40		125	°C

These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Note 1: Surface mounted on FR-4 Board using 1 square inch pad size, dual side, 1oz copper.

Note 2: The device is not guaranteed to function outside of its operating conditions.

Tel: + 1 408 567 3000

Fax: + 1 408 567 3001 www.ovt.com

Electronics Characteristics

 V_{IN} = 3.6 V, V_{OUT} = 3.3 V, Typical values are at T_J = 25°C, unless otherwise noted.

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY A	AND THERMAL PROTECT	ION					
			V_{I} = 3.6 V, V_{O} = 3.3 V, $V_{(EN)}$ = 3.6 V, not switching		18		μA
I_{Q-VIN}	Supply current into VIN		V _I = 3.6 V, V _O = 0 V, V _(EN) = 3.6 V, Output		40		
			disabled with ENABLE bit in Control Register		13		μA
I _{SD}	Shutdown current into VIN	I	V _I = 3.6 V, V _O = 0 V, V _(EN) = 0 V		0.8		μΑ
$V_{\text{IT+}}$	Under-voltage lockout three	eshold	V _{UVLO} rising	2	2.1	2.2	V
V _{IT-HYS}	UVLO threshold voltage h	ysteresis	V _{UVLO-HYS}		150		mV
T _{OTP}	Thermal shutdown temper	rature	Junction temperature rising		155		°C
T _{OTP-HYS}	Thermal shutdown hystere	esis			20		°C
I/O SIGNA	ALS						ı
	Positive-going input	SCL, SDA, VSEL				1.17	
V _{IT+}	threshold voltage	EN		1.07	1.1	1.13	V
	Negative-going input	SCL, SDA, VSEL		0.42			_
$V_{\text{IT-}}$	threshold voltage	EN		0.97	1	1.03	V
V _{HYS}	Hysteresis voltage	EN	* . * . * . * . * . * . * . * . * . * .	40			mV
I _{IH}	High-level input current	SCL, SDA, VSEL	V _(SCL) = V _(SDA) = V _(VSEL) = 1.8 V, no pullup resistor		±0.01	±0.1	_
I _{IL}	Low-level input current	SCL, SDA, VSEL	$V_{(SCL)} = V_{(SDA)} = V_{(VSEL)} = 0 \text{ V, no pullup resistor}$		±0.01	±0.1	μA
loL	Low-level output current	SCL, SDA	V _{OL} = 0.4 V	8			mA
I _{IB}	Input bias current	EN	V _(EN) = 0 V to 5.5 V		±0.01	±0.1	μΑ
POWER S	STAGE						I
			Low range	1.8		4.975	
	Output voltage range		High range	2.025		5.2	V
.,	0 1 1 1		PWM operation	-1.5		1.5	0/
Vo	Output voltage accuracy		PSM operation	-1.5		3.5	%
		105 0)	VSEL = low		3.3		.,
	Default output voltage (RA	ANGE = 0)	VSEL = high		3.45		V
			V _I = 2.9 V, V _O = 3.6 V,	F 0		0.5	
			boost operation, output sourcing current	5.2		6.5	
			V _I = 4.1 V, V _O = 3.3 V,	0.0	4.0	5.0	1
I _{LIMIT}	Switch current limit		buck operation, output sourcing current	3.8	4.3	5.2	Α
			V _I = 5 V, V _O = 3.3 V,	4.0		0.25	
			reverse-boost operation, output sinking current	-1.3		-0.35	
I _{T-(PSM)}	PSM entry threshold (peal	k) current	V _I = 4.2 V; V _O = 3.3 V		0.85		Α
IDISCHARGE	Output discharge current		$V_1 = 3.6 \text{ V}, V_0 \ge 0.8 \text{ V}$	50			mA
VT+(PG)	Positive-going power-good threshold voltage				95		%
VT-(PG)	Negative-going power-good threshold voltage				90		70
V_{INOV}	Positive-going input over	oltage threshold			5.7		V
I ² C INTER	RFACE						

Timing Requirements

Over operating junction temperature range and recommended supply voltage range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
		Standard mode	0		100					
f_{SCL}	SCL clock frequency	Fast mode	0		400	kHz				
		Fast mode plus	0		1000					
		Standard mode	4.7							
t_{LOW}	LOW period of the SCL clock	Fast mode	1.3		4	μS				
		Fast mode plus	0.5							
		Standard mode	4.0							
t _{HIGH}	HIGH period of the SCL clock	Fast mode	0.6			μS				
		Fast mode plus	0.26							
	Post front front between a GTOP and	Standard mode	4.7							
t_{BUF}	Bus free time between a STOP and	Fast mode	1.3			μS				
	a START condition	Fast mode plus	0.5							
	0.4	Standard mode	4.0							
$t_{\text{SU;STA}}$	Set-up time for a repeated START	Fast mode	0.6			μS				
	condition	Fast mode plus	0.26							
t _{HD;STA} I		Standard mode	4.0			μS				
	Hold time (repeated) START condition	Fast mode	0.6							
		Fast mode plus	0.26							
		Standard mode	250							
$t_{\text{SU;DAT}}$	Data set-up time	Fast mode	100			nS				
		Fast mode plus	50							
		Standard mode	0							
$t_{\text{HD;DAT}}$	Data hold time	Fast mode	0			μS				
		Fast mode plus	0							
		Standard mode			1000					
t _r	Rise time of both SDA and SCL signals	Fast mode	20		300	nS				
		Fast mode plus			120					
4		Standard mode			300					
t _f	Fall time of both SDA and SCL signals	Fast mode	20×V _{DD} /5.5		300	nS				
		Fast mode plus	20×V _{DD} /5.5		120					
		Standard mode	4.0							
t _{su;sto}	Set-up time for STOP condition	Fast mode	0.6			μS				
		Fast mode plus	0.26			1				
		Standard mode			3.45					
$t_{\text{VD;DAT}}$	Data valid time	Fast mode			0.9	μS				
TVD,DAI		Fast mode plus	1			1				

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Timing Requirements (continued)

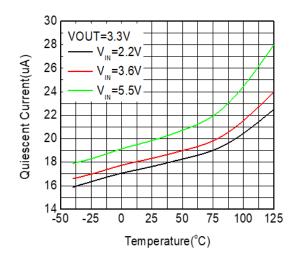
Over operating junction temperature range and recommended supply voltage range (unless otherwise noted)

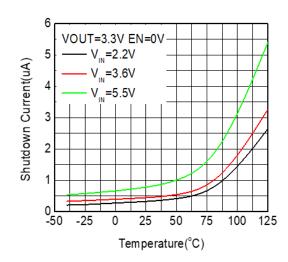
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
		Standard mode			3.45				
t _{VD;ACK}	Data valid acknowledge time	Fast mode			0.9	μS			
		Fast mode plus			0.45				
		Standard mode			400				
Сь	Capacitive load for each bus line	Fast mode			400	pF			
		Fast mode plus			550				
t _{W(VSEL)}	VSEL pulse duration	VSEL = high or low		5		μS			

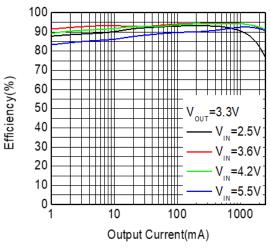
Switching Characteristics

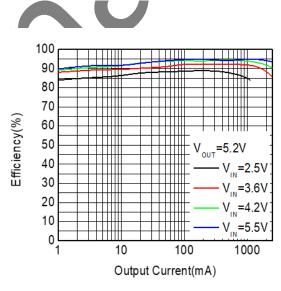
 $V_{IN} = 3.6 \text{ V}$, $V_{OUT} = 3.3 \text{ V}$, Typical values are at $T_J = 25^{\circ}\text{C}$, unless otherwise noted.

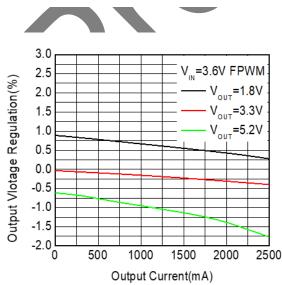
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
+	Delay between a rising edge on the EN	T _{.1} = 25°C, V _{.1} = 3.6 V	A	270	450	μS
t _{d(EN)}	pin and the start of the output voltage ramp	1j - 25 G, V _I - 3.0 V		270	450	μο
$t_{\text{d(PG)}}$	Power-good delay	V₀ falling		50		μS
		SLEW = 00b, forced-PWM operation		±1		
SR	Slew rate of internal ramp during dynamic	SLEW = 01b, forced-RWM operation		±2.5		V/mS
SK	voltage scaling	SLEW = 10b, forced-PWM operation		±5		V/IIIS
		SLEW = 11b, forced-PWM operation		±10		
f _{SW}	Inductor Switching Frequency	no Load, PWM operation		2.5		MHz
	Delay between rising edge of VSEL and				5	ı,c
t _{d(VSEL)}	start of DVS ramp				5	μS

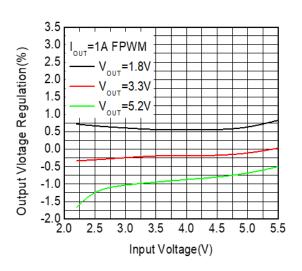


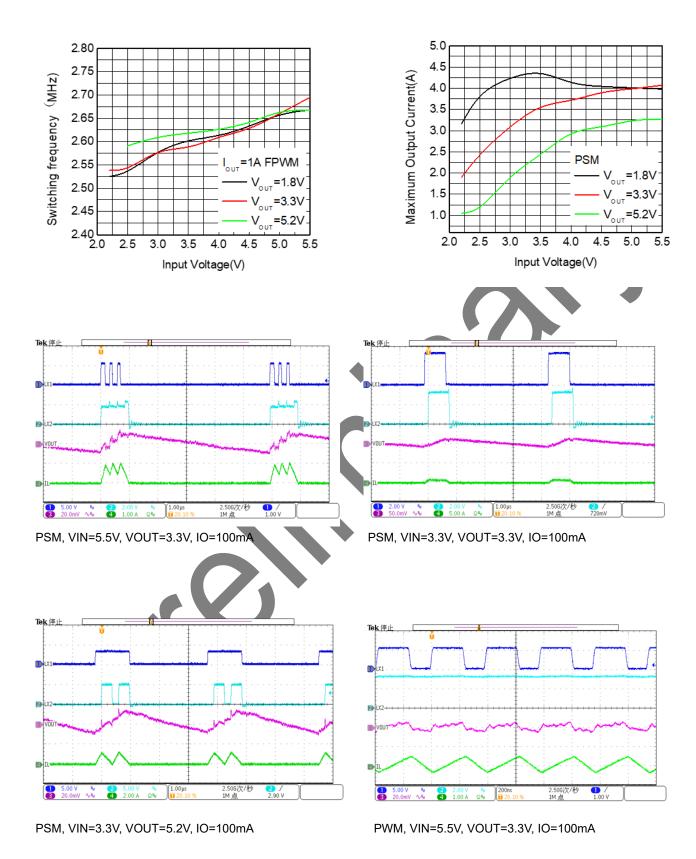

Tel: + 1 408 567 3000

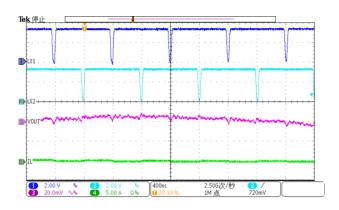

Fax: + 1 408 567 3001 www.ovt.com

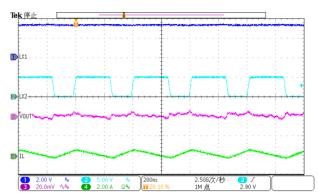

Typical Characteristics


 $(V_{IN} = 3.6 \text{ V}, V_{OUT} = 3.3 \text{ V}, \text{Typical values are at } T_J = 25^{\circ}\text{C}, \text{ unless otherwise noted.})$

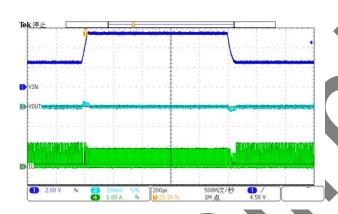


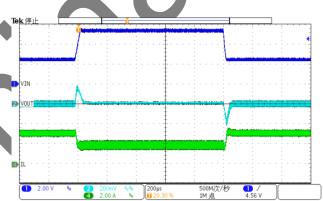




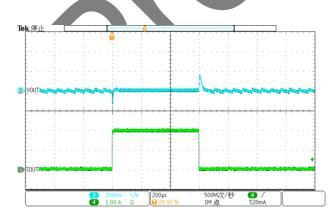

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

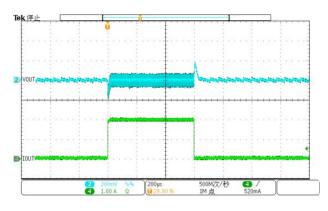
www.ovt.com





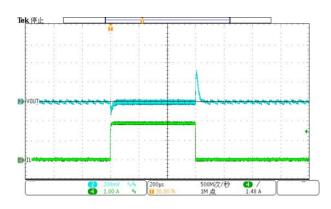
PWM, VIN=3.3V, VOUT=3.3V, IO=100mA

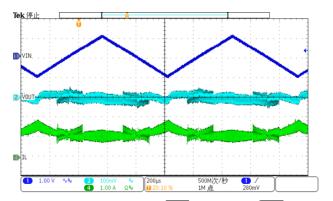

PWM, VIN=3.3V, VOUT=5.2V, IO=100mA



Line Transient: VIN=2.5V to 5.5V, VOUT=3.3V, IO=200mA

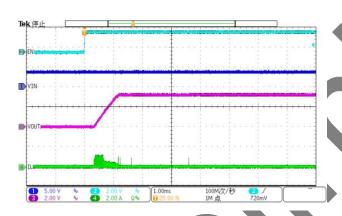
Line Transient: VIN=2.5V to 5.5V, VOUT=3.3V, IO=2A

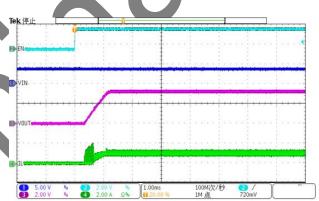




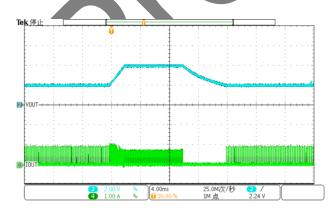
Load Transient: PSM, VIN=5.5V, VOUT=3.3V, IO=10mA to 2A

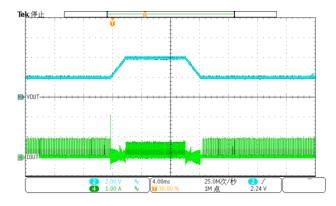
www.ovt.com


Load Transient: PSM, VIN=3.3V, VOUT=3.3V, IO=10mA to 2A



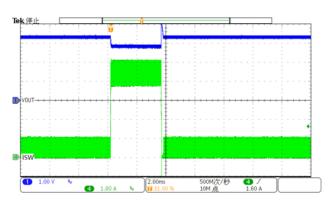
Load Transient: PSM, VIN=2.5V, VOUT=3.3V, IO=10mA to 2A

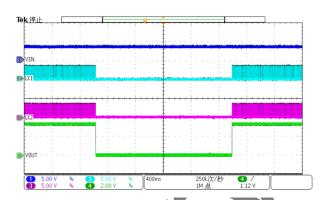

Line Sweep, FPWM, VIN= 3.3± 0.9V, VOUT=3.3V, R_L=3 Ω



Start-up, PSM, VIN=3.6V, VQUT=3.3V, No load

Start-up, PSM, VIN=3.6V, VOUT=3.3V, R_L =3.3 Ω





DVS, PSM, VIN=3.6V, VOUT=2V to 4V, R_L=330 $\,^{\circ}$

www.ovt.com

DVS, PSM, VIN=3.6V, VOUT=2V to 4V, $R_L \! = \! 330 \, \Omega$, RPWM

OCP, PSM, VIN=3.6V, VOUT=3.3V

OTP and Recovery, PSM, VIN=3.6V, VOUT=3.3V, RL=330 Ω

Operation Informations

The WD5125C is a high-efficiency buck-boost converters that integrated four switches internally to achieve high efficiency power conversion over a wide range of input voltages and output currents. It can automatically switch between buck, boost, and buck-boost operation depends on the operating conditions.

Feature Description

Operation Mode

The device could automatically select the best operation mode (buck, boost or buck-boost) depends on operation conditions as showed in below figure 1.:

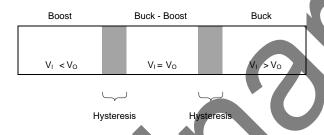


Figure 1. Operation Mode Selection

Power-Save Mode Operation (PSM)

To increase efficiency across the wide range of operating conditions, the device automatically changes from PWM at medium and high load conditions to PSM at light load condition.

To enable power-save mode, clear the FPWM bit in the Control register to 0.

PERFORMANCE PARAMETER

Low-power efficiency

Power-Save Mode (PSM)

Medium- and high-power efficiency

DC Output voltage accuracy

Transient response

Output voltage ripple

Forced-PWM

Forced-PWM

Table 1. FPWM vs. PSM Performance Comparison

Forced-PWM Operation (FPWM)

Tel: + 1 408 567 3000

Fax: + 1 408 567 3001

www.ovt.com

The device always operates in PWM mode if FPWM mode bit has been set in Control register. FPWM operation has lower output voltage ripple and better transient response than power-save mode operation, but lower efficiency at low output currents (see Table 1).

Note that the device inhibits forced-PWM operation during start-up (that is, until the converter output has reached power-good for the first time).

Enable (EN)

The EN pin enables and disables the device, high enable the device and low disable the device.

You can also use the ENABLE bit (bit 5) in the Control register to enable and disable the output of the converter (see the *Register Map*).

Table 2. Device Enable Truth Table

ENABLE PIN (EN)	ENABLE BIT	DEVICE STATE	OUTPUT STATE
0	X	Device in Shutdown	Output Discharge Active
1	0	Programming Interface Active	Output Disabled (Hi-Z)
1	1	Device Active	Output Enabled

Undervoltage Lockout (UVLO)

The device has an undervoltage lockout function that disables the device when the supply voltage is too low for correct operation.

Soft Start

To minimize inrush current and output voltage overshoot during start-up, the device has a soft-start function. At turn on, the switch current limit ramps gradually to its maximum value and the device starts up in a controlled way. The gradual increase of the current limit generates the smallest inrush current for no-load conditions. It is also possible to start into a high load as long as the load does not exceed the device current limit.

The rise time of the output voltage changes with the application circuit and the operating conditions. The output voltage rise time increases if the following occurs:

- · The output capacitance is large.
- The load current is large.
- The device operates in boost mode.

Output Voltage Control

The device supports output voltage range from 1.8 V to 5.2 V with a resolution of 25 mV. To set the needed output voltage, you must first program the RANGE bit in the Control register to select the output voltage range:

- When RANGE = 0, you can program the output voltage from 1.8 V to 4.975 V.
- When RANGE = 1, you can program the output voltage from 2.025 V to 5.2 V.

Then you can program the VOUT1 register and VOUT2 register to set the output voltage:

- When RANGE = 0, V_O = (VOUT[6:0] × 0.025) + 1.8 V
- When RANGE = 1, V_O = (VOUT[6:0] × 0.025) + 2.025 V

VOUT[6:0] is the 7-bit value in the VOUT1 register or VOUT2 register, whichever is active.

The VSEL pin selects which VOUT register is active:

Tel: + 1 408 567 3000

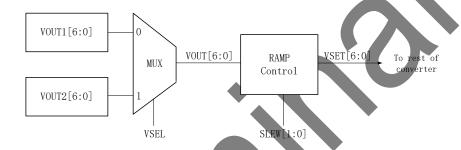
Fax: + 1 408 567 3001

www.ovt.com

- When VSEL = low, the VOUT1 register sets the output voltage.
- When VSEL = high, the VOUT2 register sets the output voltage.

To prevent output voltage transients, it is not recommended to change the output voltage range while the

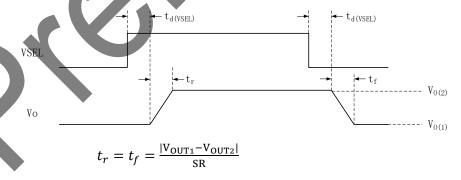
converter is in operation.


Dynamic Voltage Scaling

The device supports dynamic voltage scaling (DVS) function which lets you change the output voltage in a controlled way during operation.

Figure 2. shows a simplified block diagram of the DVS function. The VSEL pin selects either the VOUT1 register or the VOUT2 register to control the output voltage. The ramp control block detects when the target output voltage is different from the actual output voltage and ramps the output voltage to the target voltage in 25-mV steps. 2-bit SLEW parameter in the Control register has been used to select one of four slew rates from 1 V/ms to 10 V/ms.

The device starts a DVS ramp when you change the logic level on the VSEL pin or program to a new value in the active VOUT register.


Note that if you change the contents of the active VOUT register or change the state of the VSEL pin during start-up (that is, before the end of the soft start), the converter uses the new value immediately and does not ramp gradually to the final value.

Dynamic Voltage Scaling Block Diagram Figure 2.

Note that if you change the contents of the active VOUT register or change the state of the VSEL pin during start-up (that is, before the end of the soft start), the converter uses the new value immediately and does not ramp gradually to the final value.

Figure 3 shows the timing diagram when you use the VSEL pin to change between the output voltage values in the VOUT1 and VOUT2 registers

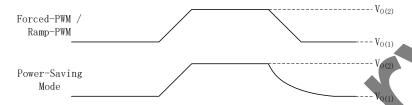
Where:

Tel: + 1 408 567 3000

Fax: + 1 408 567 3001

www.ovt.com

- VO(1) is the output voltage set by the VOUT1 register
- VO(2) is the output voltage set by the VOUT2 register
- SR is the slew rate set by the SLEW bits in the CONTROL register


Figure 3. DVS Timing Diagram Using the VSEL Pin

Ramp-PWM Operation (RPWM)

If you want the device to operate in power-save mode, but you want to make sure that dynamic voltage scaling ramps the output voltage up and down in a controlled way, Ramp-PWM operation need to be enabled. The device operates in forced-PWM when it ramps from one output voltage to another during dynamic voltage scaling. If the device operates in power-save mode and Ramp-PWM is disabled, the device cannot always control the ramp from a higher output voltage to a lower output voltage, because in power-save mode the device cannot sink current (see Figure 4).

To enable Ramp-PWM operation, set the RAMP bit (bit2) in the Control register to 1. To disable Ramp-PWM operation, clear the RAMP bit in the Control register to 0.

Ramp-PWM Operation

Protection Functions

Input Voltage Protection (V_{INOV})

Under certain operating conditions, current can flow from the output of the device to the input. For example, this can occur during dynamic voltage scaling when the output ramps down to a lower voltage and the VOUT pin sinks current from the output capacitor. Under such conditions, if the voltage source supplying the device cannot sink current, the voltage on the VIN pin can rise uncontrollably.

To make sure the input voltage stays within the permitted range, the device stops switching if the voltage on the VIN pin is greater than 5.7 V. The device automatically starts to switch again when the voltage on the VIN pin is less than 5.7 V.

Current Limit Mode and Overcurrent Protection

Tel: + 1 408 567 3000

Fax: + 1 408 567 3001

www.ovt.com

The device has a clamp circuit which limits the peak inductor current in the event of an overload. The exact value of the output current during an overload changes with the operating conditions $(V_l \text{ and } V_O)$ and the switching mode (buck, buck-boost, or boost).

Overloads increase the power dissipation in the device, which increases its temperature. If the device becomes too hot, the thermal shutdown function turns off the converter. When the device cools down, the thermal shutdown function automatically turns on the converter again. Thus, under a permanent overload condition, the device can periodically turn on and off, as it cools down and then heats up.

Thermal Shutdown

The device has a thermal shutdown function which turns off the converter if the junction temperature is greater than 155°C. The device automatically turns on the converter again when the junction temperature is less than 135°C.

When the device detects an overtemperature condition, it sets the TSD bit in the Status register to 1. The device clears the TSD bit to 0 if you read the Status register when the junction temperature of the device is less than 135°C.

Power Good

The device has a power-good function which indicates if the output of the DC/DC converter is in regulation or not. The device detects a power-good condition when the output voltage is greater than 95% of its nominal

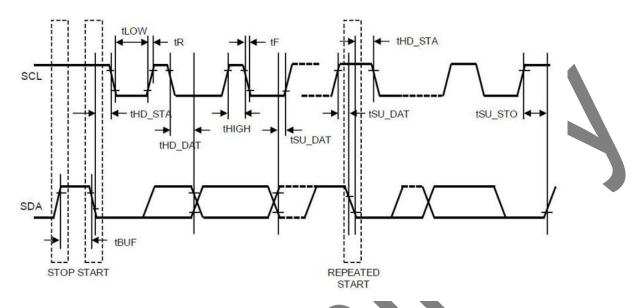
value and detects a power-not-good condition when the output voltage is less than 90% of its nominal value.

When a power-not-good condition occurs, the device sets the /PG bit in the Status register to 1. The device clears the /PG bit to 0 if you read the Status register when a power-good condition exists.

Load Disconnect

The input is disconnected from the output when the device is shut down. This prevents any current flow from the output to the input or from the input to the output.

Tel: + 1 408 567 3000


Fax: + 1 408 567 3001

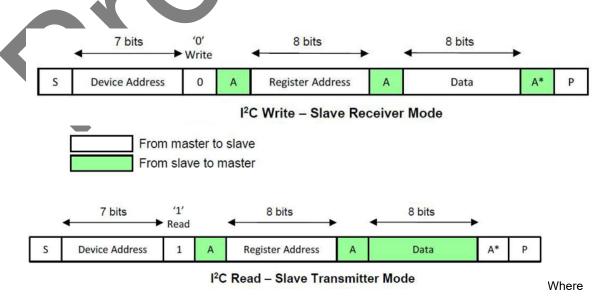
I²C Interface

Interface Overview

The WD5125C utilizes I2C interface to write / read internal registers. It supports up to 1000Kbps fast mode plus. The 7-bit I2C address is 0x75H.

Data Transactions

Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is transferred with the most significant bit (MSB) first. After each byte, an Acknowledge signal must follow.


Depending upon the state of the R/W bit, two types of data transfer are possible: Slave Receiver Mode (Write Mode) or Slave Transmitter Mode (Read Mode). The following figures provide more information on this process.

The 7-bit slave device address is 1110101 binary (or 75H).

Tel: + 1 408 567 3000

Fax: + 1 408 567 3001

www.ovt.com

Mar. 2021 - Rev. 0.7

18

S = START condition

P = STOP condition

Device Address = 1110101 (7 bits, MSB first)

Register Address = Reg1 – Reg5 address (8 bits)

Data = data to read or write (8 bits)

1 = Read command bit

0 = Write command bit

A = acknowledge (SDA low)

A* = not acknowledge (SDA high)

19

Register Definition

Register List

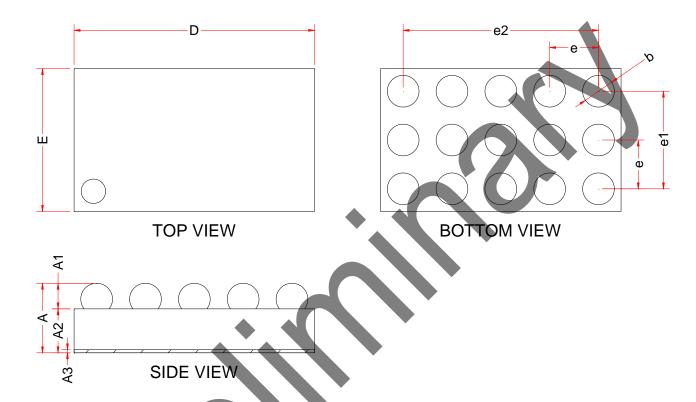
SLAVE ADDRESS	REGISTER ADDRESS	REGISTER NAME	FACTORY DEFAULT	FUNCTION
0b1110101	0x01	CONTROL	0x20	Control
0b1110101	0x02	STATUS	0x00	Status
0b1110101	0x03	DEVID	0x50	Device ID
0b1110101	0x04	VOUT1	0x3C	VOUT1
0b1110101	0x05	VOUT2	0x42	VOUT2

Register Maps

Address	Address Acronym					Detail						
Address	Acronym	Name	Bit	Field	Туре	Reset	Description					
			7	RESERVED	R/W	0	Reserved					
									This bit selects the output voltage range.			
			6	RANGE	R/W	0	0: Low range (1.800 V to 4.975 V)					
				•			1 : High range (2.025 V to 5.200 V)					
							This bit controls operation of the converter.					
			5	ENABLE	R/W	1	0 : Converter operation disabled					
							1 : Converter operation enabled					
						<u> </u>	This bit controls the out-of-audio function.					
				4	OOA	R/W	0	0 : out-of-audio operation disabled				
							1 : out-of-audio operation enabled					
							This bit controls the forced-PWM function.					
0x01	CONTROL	Control	3	FPWM	R/W	0	0 : forced-PWM operation disabled					
												1 : forced-PWM operation enabled
			M				This bit controls the ramp-PWM function.					
			2	RPWM	R/W	0	0 : ramp-PWM operation disabled					
							1 : ramp-PWM operation enabled					
							These bits control the slew rate of the					
							converter when the output					
							voltage setting is changed to a new value.					
			1-0	SLEW	R/W	00	00b = 1.0 V/ms					
							01b = 2.5 V/ms					
							10b = 5 V/ms					
							11b = 10 V/ms					

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

Register Maps(continued)

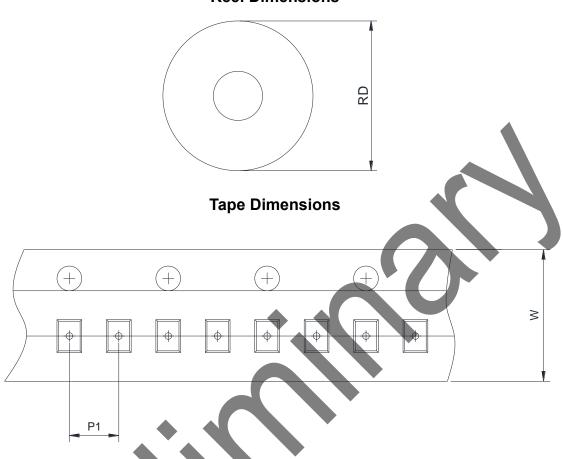

		Register				Detail			
Address	Acronym	Name	Bit	Field	Туре	Reset	Description		
			7-2	RESERVED	R	000000	Reserved		
0.00					1	/PG	R	0	This bit shows the status of the power-good comparator. 0: power-good 1: a power-not-good was detected
0x02	STATUS	Status	0	TSD	R	0	This bit shows the status of the thermal shutdown function. 0: temperature good 1: an overtemperature event was detected		
			7-4	MANUFACTURER[3:0]	R	0101	These bits identify the device manufacturer. 0101 – Will Semiconductor		
0x03	3 DEVID	DEVID	Device Identity		3-2	MAJOR[1:0]	R	00	These bits identify the major silicon revision. 00: A (initial silicon) 01: B (first major revision) 10: C (second major revision) 11: D (third major revision)
			1-0	MINOR[1:0]	R	00	These bits identify the minor silicon revision. 00: 0 (initial silicon) 01: 1 (first minor revision) 10: 2 (second minor revision) 11: 3 (third minor revision)		
			7	Reserved	R/W	0	Reserved.		
0x04 VOUT	VOUT1	VOUT1 Device Identity	6-0	VOUT1[6:0]	R/W	011 1100	These bits set the output voltage when the VSEL pin is low. VOUT = 1.800 + (VOUT1[6:0] × 0.025) V (low range) (default = 3.3 V) VOUT = 2.025 + (VOUT1[6:0] × 0.025) V (high range) (default = 3.525 V)		
			7	Reserved	R/W	0	Reserved.		
0x05	VOUT2	Device Identity	6-0	VOUT2[6:0]	R/W	100 0010	These bits set the output voltage when the VSEL pin is high. VOUT = 1.800 + (VOUT2[6:0] × 0.025) V (low range) (default = 3.45 V) VOUT = 2.025 + (VOUT2[6:0] × 0.025) V (high range) (default = 3.675 V)		

Mar. 2021 - Rev. 0.7

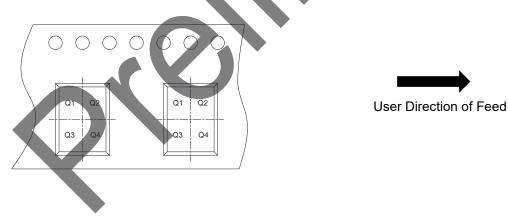
21

PACKAGE OUTLINE DIMENSIONS

CSP-15L



Symbol	Dimensions in Millimeters					
Symbol	Min.	Тур.	Max.			
A	0.51	0.56	0.61			
A1	0.19	0.21	0.23 0.38			
A2	0.32	0.35				
A3	0.025REF					
b	0.24	0.26	0.28			
D	1.94	1.97	2.00			
Е	1.14	1.17	1.20			
е	0.40BSC					
e1	0.80BSC					
e2	1.60BSC					


Tel: + 1 408 567 3000 Fax: + 1 408 567 3001

TAPE AND REEL INFORMATION

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

RD	Reel Dimension	✓ 7inch	13inch		
W	Overall width of the carrier tape	✓ 8mm	☐ 12mm		
P1	Pitch between successive cavity centers	☐ 2mm	✓ 4mm	☐ 8mm	
Pin1	Pin1 Quadrant	₹ Q1	□ Q2	☐ Q3	□ Q4

Mar. 2021 - Rev. 0.7

Tel: + 1 408 567 3000 Fax: + 1 408 567 3001