WD31089Q

12.6V, 7A Fully-Integrated Synchronous Boost Converter

Descriptions

The WD31089 is a fully-integrated synchronous boost converter. The device provides a high efficiency and small size power solution for portable equipment. The WD31089 features wide input voltage range from 2.7 V to 12 V to support applications powered with single cell or two cell Lithium ion/polymer batteries. The WD31089 has 7A continuous switch current capability and provides output voltage up to 12.6 V .

The WD31089 uses adaptive constant off-time peak current mode control to regulate the output voltage. The switching frequency in the PWM mode is adjustable from 200 kHz to 2.2 MHz . The WD31089 also implements a built-in 4 ms soft start function and an adjustable peak switch current limit function. In addition, the device provides 13.2 V output overvoltage protection, cycle-by-cycle overcurrent protection, and thermal shutdown protection.

The WD31089 is available in a $2.0 \mathrm{~mm} \times 2.5 \mathrm{~mm}$ QFN2520-12L package. Standard products is Pb-Free and Halogen-Free.

Features

- Input Voltage Range of 2.7 V to 12 V
- Output Voltage Range: 4.5 V to 12.6 V
- Integrate $19 \mathrm{~m} \Omega$ (Power Switch) / $27 \mathrm{~m} \Omega$ (Rectifier Side)
- Up to 90% EFF at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=9 \mathrm{~V}$, lout $=2 \mathrm{~A}$
- Adjustable Switching Frequency: 200 kHz to 2.2 MHz
- Resistor-Programmable Peak Current Limit up to 10A for high pulse current and Hiccup
- Power Save Mode at Light Load
- Fast Load Transient Response with COT Control Mode
- Internal Output Overvoltage Protection at 13.2 V
- Thermal Shutdown

QFN2520-12L

= Year code
= Week code

Marking

Applications

- Bluetooth ${ }^{\text {TM }}$ Speaker
- Quick Charge Power Bank
- Portable POS Terminal
- E-Cigarette

Order information

Device	Package	Shipping
WD31089Q-12/TR	QFN2520-12L	3000/Reel\&Tape

Typical Applications

Pin Descriptions

No.	Symbol	Description
1	FSW	Switching frequency is programmed by a resister between this pin and the SW pin.
2	VCC	Output of the internal regulator. A ceramic capacitor of more than 1.0μ F is required between this pin and ground.
3	FB	Output voltage feedback.
4	COMP	Qutput of the internal trans-conductance amplifier, the loop compensation network should be connected between this pin and the GND pin.
5	GND	Ground.
6	VOUT	Converter output.
7	EN	Enable input control pin. High logic enables the device and low logic disables the device.
8	ILIM	Peak current limit programmed by a resister between this pin and the GND pin.
9	VIN	Supply Voltage pin. Requires a ceramic cap of 0.1uF or more is required between this pin and ground.
10	BOOT	Bootstrap pin. Connect a 0.1uF capacitor between this pin and SW pin
11	SW	Switching node.

Block Diagram

Recommended Operation Conditions ${ }^{(2)}$

Symbol	Characteristics	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Supply Voltage	2.7		12	V
$\mathrm{Vout}^{\text {Out }}$	Output Voltage	4.5		12.6	V
L	Inductance, effective value	0.47	2.2	10	$\mu \mathrm{H}$
$\mathrm{C}_{\text {IN }}$	Input capacitance, effective value	10			$\mu \mathrm{~F}$
$\mathrm{CouT}^{\mathrm{C}}$	Output capacitance, effective value	10	47	1000	$\mu \mathrm{~F}$
C	VCC decoupling cap		1.0		$\mu \mathrm{~F}$
$\mathrm{~T}_{\mathrm{J}}$	Bootstrap cap		0.1		$\mu \mathrm{~F}$
	Operating junction temperature	-40	-	125	${ }^{\circ} \mathrm{C}$

These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
Note 1: Surface mounted on FR-4 Board using 1 square inch pad size, dual side, 1 oz copper.
Note 2: The device is not guaranteed to function outside of its operating conditions. www.ovt.com

Electronics Characteristics

$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 5.5 V , Vout $=9 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
POWER SUPPLY						
Input Voltage Range	VIN		2.7		12	V
VIN Under Voltage Lockout	Vuvlo	Rising			2.7	V
Threshold		Falling		2.4	2.5	
VIN UVLO Hysteresis	Vin_HYS			200		mV
VCC Regulation Voltage	Vcc	$\mathrm{ICC}=2 \mathrm{~mA}, \mathrm{VIN}=8 \mathrm{~V}$		5.5		V
VCC UVLO Threshold	Vcc_uvLo			$2.1 \times$		V
Standby Supply Current into VIN	lQ	$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$, lout $=0 \mathrm{~A}$		10	15	$\mu \mathrm{A}$
Standby Supply Current into $\mathrm{V}_{\text {out }}$		$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$, lout $=0 \mathrm{~A}$		70	100	$\mu \mathrm{A}$
Shutdown Supply Current	ISHDN	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{Vin}=5.5 \mathrm{~V}$			3.	$\mu \mathrm{A}$
OUTPUT						
Output Voltage Range	Vout		4.5		12.6	v
Feedback Reference Voltage	V_{FB}		-2\%	1.212	2\%	V
Feedback Leakage Current	$\mathrm{I}_{\text {FB }}$	$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$			± 100	nA
Output Overvoltage Protection Threshold	Vovp	Vout rising	12.7	13.2	13.7	v
Output Overvoltage Protection Hysteresis	Vovp_hYs	Vout falling below Vovp		0.25		V
Soft Startup Time	tss	$\begin{aligned} & \text { Cout(effective) }=47 \mu \mathrm{~F}, \\ & \text { Iout }=0 \mathrm{~A} \end{aligned}$	2	4	6	ms
ERROR AMPLIFIER						
COMP Pin Sink Current	IsInk	$\begin{aligned} & V_{F B}=V_{R E F}+200 \mathrm{mV} \\ & V_{\text {COMP }}=1.9 \mathrm{~V} \end{aligned}$		20		$\mu \mathrm{A}$
COMP Pin Source Current	Isource	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}}-200 \mathrm{mV}, \\ & \mathrm{~V}_{\mathrm{COMP}}=1.9 \mathrm{~V} \end{aligned}$		20		$\mu \mathrm{A}$
High Clamp Voltage at the COMP Pin	VCCLP_H	$\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}, \mathrm{R}_{\text {ILIM }}=127 \mathrm{k} \Omega$		2.3		V
Low Clamp Voltage at the COMP Pin	Vcclp_L	$\mathrm{V}_{\mathrm{FB}}=1.4 \mathrm{~V}, \mathrm{R}_{\text {ILIM }}=127 \mathrm{k} \Omega$		1.4		V
Error Amplifier Transconductance	$\mathrm{GEA}_{\text {E }}$	$\mathrm{V}_{\text {COMP }}=1.9 \mathrm{~V}$		190		$\mu \mathrm{S}$
POWER SWITCH						
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of HS FET	Rufet	Isw $=100 \mathrm{~mA}$		27	44	$\mathrm{m} \Omega$
R ${ }_{\text {dS(ON) }}$ of LS FET	RLFET	Isw $=-100 \mathrm{~mA}$		19	31	$\mathrm{m} \Omega$
SWITCHING FREQUENCY						
Oscillator Frequency	Fsw	$\mathrm{R}_{\text {FSW }}=301 \mathrm{k} \Omega$		500		kHz
		$\mathrm{R}_{\text {FSW }}=46.4 \mathrm{k} \Omega$		2000		kHz
Minimum On Time	ton_min	$\mathrm{VCC}=5.5 \mathrm{~V}$		90	180	ns

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
CURRENT LIMIT						
Inductor Valley Current Limit	ILım	$\mathrm{RILIM}=127 \mathrm{k} \Omega$	7.3	8.1	8.9	A
		$\mathrm{RILIM}=100 \mathrm{k} \Omega$	9	10	11	A
Internal Reference Voltage at ILIM Pin	VILIM			1.212		V
EN LOGIC INPUT						
EN Rising Threshold	$\mathrm{V}_{\text {ENH }}$				1.2	V
EN Falling Threshold	$\mathrm{V}_{\text {ENL }}$		0.4			V
EN Pulldown Resistor	$\mathrm{R}_{\text {EN }}$			800		k Ω
Protection						
Over Temperature Protection	Tотр	T_{J} rising		155		${ }^{\circ} \mathrm{C}$
OTP Hysteresis	Totp_hYs	TJ falling below Totp		25		${ }^{\circ} \mathrm{C}$

Typical Characteristics

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=9 \mathrm{~V}, \mathrm{~L} 1=1.8 \mathrm{uH}, \mathrm{C}_{\text {IN }}=22 \mathrm{uF}, \mathrm{CoUT}=3 \times 22 \mu \mathrm{~F}, \mathrm{C} 4=0.1 \mathrm{uF}, \mathrm{C} 3=2.2 \mathrm{uF}\right.$, unless otherwise noted $)$

Startup, VIN $=3.6 \mathrm{~V}, \mathrm{VOUT}=9 \mathrm{~V}$, $\mathrm{IOUT}=2 \mathrm{~A}$

Ripple, VIN =3.6V, VOUT $=9 \mathrm{~V}$, IOUT $=0 \mathrm{~A}$

Load Transient, VIN $=3.6 \mathrm{~V}$, VOUT $=9 \mathrm{~V}$, $\mathrm{IOUT}=1 \mathrm{~A}$ to 2 A

Operation Informations

The WD31089Q is a synchronous boost converter that is capable to output continuous power more than 18 W from input of a single cell Lithium-ion battery or two-cell Lithium-ion batteries in series. The WD31089Q operates at a quasi-constant frequency with constant off peak current mode control scheme at moderate to heavy load currents, which provides excellent line and load transient response. At light load condition, the WD31089Q operates in PFM mode to improve efficiency. The externat loop compensation brings flexibility to use different inductors and output capacitors. The device implements cycle-by-cycle current limit to protect the device from overload conditions during boost mode.

Undervoltage Lockout (UVLO)

An under-voltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below the typical UVLO threshold of 2.5 V . A hysteresis of 200 mV is added so that the device cannot be enabled again until the input voltage goes up to 2.7 V . This function is implemented in order to prevent malfunctioning of the device when the input voltage is between 2.5 V and 2.7 V .

Enable and Disable
 Line Transient, VIN $=3.3 \mathrm{~V}$ to 4 V , VOUT $=9 \mathrm{~V}$, IOUT $=2 \mathrm{~A}$

When the input voltage is above maximal UVLO rising threshold of 2.7 V and the EN pin is pulled above the high threshold, the WD31089Q is enabled. When the EN pin is pulled below the low threshold, the WD31089Q goes into shutdown mode. The device stops switching in the shutdown mode and consumes less than $1 \mu \mathrm{~A}$ current (typ.). Because of the body diode of the high side rectifier FET, the input voltage goes through the body diode and appears at the Vout pin at the shutdown mode.

Soft Start

The WD31089Q implements the soft start function to reduce the inrush current during startup. The WD31089Q begins soft start when the EN pin is pulled to logic high voltage. The soft start time is typically 4 ms .

Adjustable Switching Frequency

The WD31089Q features a wide adjustable switching frequency ranging from 200 kHz to 2.2 MHz . The switching frequency is set by a resistor connected between the FSW pin and the SW pin of the WD31089Q. Do not leave the FSW pin open. Use Equation 1 to calculate the resistor value required for a desired frequency.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{FREQ}}=\frac{4 \times\left(\frac{1}{\mathrm{f}_{\mathrm{SW}}}-\mathrm{t}_{\text {DELAY }} \times \frac{\mathrm{v}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right)}{\mathrm{C}_{\mathrm{FREQ}}} \tag{1}
\end{equation*}
$$

where

- $\mathrm{R}_{\text {freq }}$ is the resistance connected between the FSW pin and the SW pin.
- $\mathrm{C}_{\text {freq }}=24 \mathrm{pF}$
- $f_{\text {sw }}$ is the desired switching frequency.
- $\mathrm{t}_{\text {delay }}=86 \mathrm{~ns}$
- Vin is the input voltage.
- Vout is the output voltage.

Adjustable Peak Current Limit

To avoid an accidental large peak current, an internal cycle-by-cycle current limit is adopted. The low-side switch turns off immediately as long as the peak switch current touches the limit. The peak inductor current can be set by selecting the correct external resistor value correlating with the required current limit. Use Equation 2 to calculate the correct resistor value for the WD31089Q.

$$
\mathrm{I}_{\mathrm{LIM}}=\frac{1030000}{\mathrm{R}_{\mathrm{ILIM}}}
$$

where

- RILIM is the resistance connected between the ILIM pin and ground.
- Ilim is the switch peak current limit.

For a typical current limit of 8 A , the resistor value is $127 \mathrm{k} \Omega$ for the WD31089Q.

Overvoltage Protection

If the output voltage at the Kout pin is detected above over-voltage protection threshold of 13.2 V (typical value), the WD31089Q stops switching immediately until the voltage at the Vout pin drops the hysteresis voltage lower than the output over-voltage protection threshold. This function prevents over-voltage on the output and secures the circuits connected to the output from excessive overvoltage.

Thermal Shutdown

A thermal shutdown is implemented to prevent damage due to excessive heat and power dissipation. Typically, the thermal shutdown happens at the
junction temperature of $155^{\circ} \mathrm{C}$. When the thermal shutdown is triggered, the device stops switching until the junction temperature falls below typically $130^{\circ} \mathrm{C}$, then the device starts switching again.

Application Informations

Setting Output Voltage

The output voltage is set by an external resistor divider (R1, R2). Typically, a minimum current of $10 \mu \mathrm{~A}$ flowing through the feedback divider gives good accuracy and noise covering. A resistor of less than $120 \mathrm{k} \Omega$ is typically selected for low-side resistor R2.
When the output voltage is regulated, the typical voltage at the FB pin is $V_{\text {REF }}$. Thus the value of R1 is calculated as:

$$
\begin{equation*}
\mathrm{R}_{1}=\frac{\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {REF }}\right) \times \mathrm{R}_{2}}{\mathrm{~V}_{\text {REF }}} \tag{3}
\end{equation*}
$$

Inductor Selection

Because the selection of the inductor affects the power supply's steady state operation, transient behavior, loop stability, and boost converter efficiency, the inductor is the most important component in switching power regulator design. Three most important specifications to the performance of the inductor are the inductor value, DC resistance, and saturation current.
The WD31089Q is designed to work with inductor values between $0.47 \mu \mathrm{H}$ and $10 \mu \mathrm{H}$. A $0.47 \mu \mathrm{H}$ inductor is typically available in a smaller or lowerprofile package, while a $10 \mu \mathrm{H}$ inductor produces lower inductor current ripple. If the boost output current is limited by the peak current protection of the IC, using a $10 \mu \mathrm{H}$ inductor can
maximize the controller's output current capability. Inductor values can have $\pm 20 \%$ or even $\pm 30 \%$ tolerance with no current bias. When the inductor current approaches saturation level, its inductance can decrease 20% to 35% from the value at 0 A current depending on how the inductor vendor defines saturation. When selecting an inductor, make sure its rated current, especially the saturation current, is larger than its peak current during the operation.
Follow Equation 4 to Equation 4 to calculate the peak current of the inductor. To calculate the
current in the worst case, use the minimum input voltage, maximum output voltage, and maximum load current of the application. To leave enough design margin, TI recommends using the minimum switching frequency, the inductor value with -30% tolerance, and a low-power conversion efficiency for the calculation.
In a boost regulator, calculate the inductor DC current as in Equation 4.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{DC}}=\frac{\mathrm{V}_{\text {OUT }} \times \mathrm{I}_{\text {OUT }}}{\mathrm{V}_{\text {IN }} \times \eta} \tag{4}
\end{equation*}
$$

where

- Vout is the output voltage of the boost regulator.
- lout is the output current of the boost regulator.
- Vin is the input voltage of the boost regulator
- η is the power conyersion efficiency.

Calculate the inductor current peak-to-peak ripple as in Equation 5.

$$
\mathrm{I}_{\mathrm{PP}}=\frac{1}{\mathrm{~L} \times\left(\frac{1}{\mathrm{~V}_{\text {OUT }}-V_{\text {IN }}}+\frac{1}{\mathrm{~V}_{\text {IN }}}\right) \times \mathrm{f}_{\text {SW }}}
$$

where

- Ipp is the inductor peak-to-peak ripple.
- L is the inductance value.
- f sw is the switching frequency.
- Vout is the output voltage.
- Vin is the input voltage.

Therefore, the peak current, ILpeak, seen by the inductor is calculated with Equation 6.

$$
\begin{equation*}
\mathrm{I}_{\text {Lpeak }}=\mathrm{I}_{\mathrm{DC}}+\frac{\mathrm{I}_{\mathrm{Pp}}}{2} \tag{6}
\end{equation*}
$$

Set the current limit of the WD31089Q higher than the peak current ILpeak. Then select the inductor with saturation current higher than the setting current limit.
Boost converter efficiency is dependent on the resistance of its current path, the switching loss associated with the switching MOSFETs, and the inductor's core loss. The WD31089Q has optimized the internal switch resistance. However, the overall efficiency is affected significantly by the inductor's $D C$ resistance (DCR), and the core loss. Core loss is related to the core material and different inductors have different core loss. For a
certain inductor, larger current ripple generates higher DCR and core loss. Usually, the datasheet of components don't provide the core loss information. If needed, consult the inductor vendor for detailed information. Generally, we would recommend an inductor with lower DCR and core loss. However, there is a tradeoff among the inductor's inductance, DCR and ESR resistance, and its footprint. Furthermore, shielded inductors typically have higher DCR than unshielded inductors. Verify whether the recommended inductor can support the user's target application with the previous calculations and bench evaluation.

Input Capacitor Selection

For good input voltage filtering, ceramic capacitors with low-ESR Will recommended. The VIN pin is the power supply for the WD31089Q. A $0.1 \mu \mathrm{~F}$ ceramic bypass capacitor is recommended as close as possible to the Vin pin of the WD31089Q. The Vcc pin is the output of the internal LDO. A ceramic capacitor of more than $1.0 \mu \mathrm{~F}$ is required at the V_{cc} pin to get a stable operation of the LDO. For the power stage, because of the inductor current ripple, the input voltage changes if there is parasitic inductance and resistance between the power supply and the inductor. It is recommended to have enough input capacitance to make the input voltage ripple less than 100 my . Generally, $10 \mu \mathrm{~F}$ input capacitance is sufficient for most applications.

Output Capacitor Selection

For small output voltage ripple, low-ESR output capacitor such as ceramic capacitor is recommended. Typically, three $22 \mu \mathrm{~F}$ ceramic output capacitors work for most applications. Higher capacitor values can be used to improve the load transient response. Take care when evaluating a capacitor's derating under DC bias. The DC bias can significantly reduce the effective capacitance. Ceramic capacitors can lose most of their capacitance at rated voltage. Therefore, leave
margin on the voltage rating to ensure adequate effective capacitance. From the required output voltage ripple, use the following equations to calculate the minimum required effective capacitance Co:

$$
\begin{align*}
& V_{\text {ripple_dis }}=\frac{\left(\mathrm{V}_{\text {out }}-V_{\text {IN_MIN }}\right) \times \mathrm{I}_{\text {OUT }}}{\mathrm{V}_{\text {OUT }} \times \mathrm{f}_{\text {SW }} \times \mathrm{C}_{\mathrm{O}}} \tag{7}\\
& \mathrm{~V}_{\text {ripple_ESR }}=I_{\text {Lpesk }} \times R_{\text {ESR }} \tag{8}
\end{align*}
$$

where

- $V_{\text {ripple_dis }}$ is output voltage ripple caused by charging and discharging of the output capacitor.
- Vripple_ESR is output voltage ripple caused by ESR of the output capacitor.
- VIN_min is the minimum input voltage of boost converter.
- Vout is the output voltage.
- lout is the output current.
- I Leeakis the peak current of the inductor.
- f sw is the converter's switching frequency.
- Resris the $E S R$ of the output capacitors.

PC Board Layout Considerations

The device is designed to operate from an input voltage supply range between 2.7 V to 12 V . This input supply must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. A typical choice is an electrolytic or tantalum capacitor with a value of $47 \mu \mathrm{~F}$.
As for all switching power supplies, especially those running at high switching frequency and high currents, layout is an important design step. If layout is not carefully done, the regulator could suffer from instability and noise problems. To maximize efficiency, switching rise time and fall time are very fast. To prevent radiation of highfrequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the length and area of all traces connected to the SW pin, and always use a ground plane under the switching regulator to minimize interplane coupling. The input capacitor needs to www.ovt.com
be close to the VIN pin and GND pin in order to reduce the input supply current ripple.
The most critical current path for all boost converters is from the switching FET, through the rectifier FET, then the output capacitors, and back to ground of the switching FET. This high current path contains nanosecond rise time and fall time, and should be kept as short as possible. Therefore, the output capacitor needs not only to be close to the Vout pin, but also to the GND pin to reduce the overshoot at the SW pin and Vout pin.

QFN2520-12L

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	∇ 7inch	Γ 13inch		
W	Overall width of the carrier tape	$\nabla 8 \mathrm{~mm}$	$\Gamma 12 \mathrm{~mm}$		
P1	Pitch between successive cavity centers	$\Gamma 2 \mathrm{~mm}$	$\Gamma 4 \mathrm{~mm}$	$\Gamma 8 \mathrm{~mm}$	
Pin1	Pin1 Quadrant	Γ Q1	$\Gamma \mathrm{Q} 2$	$\Gamma \mathrm{Q} 3$	$\Gamma \mathrm{Q} 4$

